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On the Path Integral Treatment for an
Aharonov ± Bohm Field on the Hyperbolic Plane

Christian Grosche1
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In this paper I discuss by means of path integrals the quantum dynamics of a
charged particle on the hyperbolic plane under the influence of an
Aharonov ±Bohm gauge field. The path integral can be solved in terms of an
expansion of the homotopy classes of paths. I discuss the interference pattern of
scattering by an Aharonov±Bohm gauge fieÂld in the flat-space limit, yielding a
characteristic oscillating behavior in terms of the field strength. In addition, the
cases of the isotropic Higgs oscillator and the Kepler±Coulomb potential on the
hyperbolic plane are briefly sketched.

1. INTRODUCTION

The Aharonov ±Bohm gauge field has a long history, beginning in 1959

with a classical paper by Aharonov and Bohm (1959). The effect has been

well studied and well confirmed (Anandan and Safko, 1994), but not necessar-

ily well understood. It describes the motion of charged particles, i.e., electrons,
which are scattered by an infinitesimal thin solenoid. The magnetic vector

potential A of the solenoid produces a magnetic field which is essentially d -

like, i.e., its support is an infinitesimal thin solenoid, and it is vanishing

everywhere else. Geometrically this experimental setup corresponds to the

quantum motion of a particle (which we consider as spinless) in R 2, where

a point has been removed with the consequence that topologically R 2 becomes
no longer connected. Since the solenoid is assumed impenetrable, the space

of the particle motion M is the Euclidean plane minus the cross section of

the solenoid. Everywhere in M , = 3 A 5 0 and hence A 5 = f(r), where

f(r) is an arbitrary scalar function of r 5 ) x ) , x P R 2. Classically, a charged

particle is not affected at all by the solenoid. However, in quantum mechanics,
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the particle’s wavefunction picks up in a scattering experiment a phase factor

according to

C a (x) 5 C 0(x) exp 1 ie

" c # path a

A ? dx 2 (1)

where C 0(x) is the vector potential-free solution. The wavefunction C effec-

tive to a measurement is the sum of solutions corresponding to inequivalent
paths, i.e., C 5 ( a C a . Topologically the paths a can be distinguished by

their winding numbers n, thus giving rise to infinitely many homotopy classes

designated by the number n.

Path integral treatments of the Aharonov ±Bohm effect in the Euclidean

plane are due to Bernido and Inomata (1980, 1981), Gerry and Singh (1979,

1982, 1983), Liang (1988), and Schulman (1971). Harmonic interactions have
been dealt with by Kibler and Campigotto (1993), the Coulomb±Kepler

potential has been taken into account by Chetounai et al. (1989), DraÏ gaÏ nascu

et al. (1992), Hoang et al. (1992), Kibler and Negadi (1987), Lin (1998),

and Park and Yoo (1998), and relativistic particles by, e.g., Bernido (1993),

Gamboa and Rivelles (1991), Hoang et al. (1992), Hoang and Giang (1993),

Lin (1998), and Park and Yoo (1998); a more comprehensive bibliography can
be found in, e.g., Anandan and Safko (1994), or Grosche and Steiner (1998).

Feynman path integrals (e.g., Feynman and Hibbs, 1965; Grosche, 1996;

Grosche and Steiner, 1998; Kleinert, 1995; Schulman, 1981) provide us with

global information on the quantum motion, including the topological effects

on the wavefunction. If we want to study the Aharonov ±Bohm effect by
means of path integrals (Berndio and Inomata, 1980, 1981; Gerry and Singh,

1979, 1982, 1983; Liang, 1988), we consider the time evolution form t 5 0

to t 5 T of the wavefunction of a particle according to

C a (x9; T ) 5 o
b # K a b (x9, x8; T ) C a (x8; 0) dx8 (2)

where

K a b (x9, x8; T ) 5 K0(x9, x8; T ) exp F ie

" c 1 #
x9

path a

2 #
x8

path b 2 A ? dx G (3)

and this leads us to the formal expression separating the sum over a and b
(under the assumption the separation is well defined)

o
a , b

K a b C b 5 K o
b

C b (4)
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Provided the paths a , b cover in an idealized experiment the whole range

from minus infinity to plus infinity, we can express the separation of the

time evolution of the particle according to

K(x9, x8; T ) 5 o
`

n 5 2 `
Kn(x9, x8; T ) (5)

where n 5 0 denotes the unperturbed case in R 2, i.e., we obtain the free
propagator on the entire R 2. For the final result we obtain for the Feynman

kernel the following form (e.g., Berndio and Inomata, 1980, 1981; Grosche

and Steiner, 1998; Liang, 1988):

K(x9, x8; T ) 5
m

2 p i " T
exp 1 im

2 " T
(r82 1 r92) 2 o

`

n 5 2 `
ein( w 9 2 w 8)I ) n 2 j ) 1 mr8r9

i " T 2 (6)

Here, two-dimensional polar coordinates (r, w ) have been used, and j 5 e F /

2 p " c with F 5 B 3 area the magnetic flux.

2. AHARONOV± BOHM FIELD ON THE HYPERBOLIC PLANE

In this paper I would like to give a path integral treatment of the

Aharonov ±Bohm effect on the hyperbolic plane (Kuperin et al., 1994), i.e.,
the scattering of (spinless) electrons by an Aharonov ±Bohm field on leaky

tori. Such systems play an important role in the theory of quantum chaos

(e.g., Gutzwiller, 1991). The hyperbolic plane, respectively Lobachevsky

space, is defined as one sheet of the double-sheeted hyperboloid

u2 5 u2
0 2 u2

1 2 u2
2 5 R2, u0 . 0 (7)

The model of the upper-half plane U 5 {I(z) 5 y . 0 ) z 5 x 1 iy} endowed

with the metric has the form (where I have set for simplicity R 5 1)

ds2 5
dx2 1 dy2

y2 , x P R , y . 0 (8)

Alternatively we can also consider the unit-disk model D 5 {z 5 rei q ) r ,
1, q P [0, 2 p )}

ds2 5 4
dr2 1 r2 d q 2

(1 2 r2)2 , r , 1, q P [0, 2 p ) (9)

and the pseudosphere L 5 {z 5 i tanh( t /2) e 2 i w ) t . 0, w P [0, 2 p )}

ds2 5 d t 2 1 sinh2 t d w 2, t . 0, w P [0, 2 p ) (10)
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U, D, and L are three coordinate-space representations out of nine of the

hyperbolic plane (Grosche et al., 1996; Grosche, 1996; Olevskii
Æ
, 1950).

Plane waves have the asymptotic representation } y1/2 6 ik (e.g., on U, k the
wavenumber), e 2 ( 6 ik 1 1/2) t (on L ), and the coordinate origin is r 5 0 (on D),

t 5 0 (on L ), and z 5 i (on U ), respectively. The isometries on the hyperbolic

plane are MoÈ bius transformations corresponding to the symmetry group

PSL(2, R ), and magnetic fields give rise to the consideration of automorphic

forms in the theory of the Selberg trace formula (Hejhal, 1976).

Constant magnetic fields on the hyperbolic plane have been studied by,
e.g., Comtet (1987), Fay (1977), and Pnueli (1994), and by means of path

integrals by Grosche (1988, 1990a). The path integral formulation for a

particle on the hyperbolic plane subject to a constant magnetic field on L
has the form (Grosche, 1990a) (I implicitly assume that the constant negative

curvature of the hyperbolic plane, i.e., the two-dimensional hyperboloid,

equals one, u P L )

K(u9, u8; T )

[ K( t 9, t 8, w 9, w 8; T )

5 #
t (T) 5 t 9

t (0) 5 t 8

$ t (t) sinh t #
w (T) 5 w 9

w (0) 5 w 8

$ w (t)

3 exp H i

" #
T

0 F m

2
( t Ç 2 1 sinh2 t w Ç 2) 2 b(cosh t 2 1) w Ç

2
" 2

8m 1 1 2
1

sinh2 t 2 G dt J
5 exp 1 2

i " T

8m 2 lim
N ® ` 1 m

2 p i " e 2
N

&
N 2 1

j 5 1 #
`

0

sinh t j d t j #
2 p

0

d w j

3 exp F i

" o
N

j 5 1 1 m

2 e
( D 2 t j 1

Ù
sinh2 t j D 2 w j)

2 b(
Ù
cosh t j 2 1) D w j 2

e " 2

8m sinh2 t j 2 G
5 o

`

l 5 2 ` F o
Nmax

N 5 0

e 2 iEnT/ " C b
Nl( t 9, w 9) C b*

Nl( t 8, w 8)

1 #
`

0

dK e 2 iEkT/ " C b
kl( t 9, w 9) C b*

kl ( t 8, w 8) G (11)
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Here b 5 eB/ " c, with B the strength of the magnetic field; c denotes the

velocity of light. For the magnetic field B I have chosen the gauge

A 5 1 A t

A w 2 5 B(cosh t 2 1) 1 0

1 2 (12)

Due to dB 5 ( - t A w 2 - w A t ) d t Ù d w 5 (m/2)B sinh t d t Ù d w , dB has the

form constant 3 volume form and can thus be interpreted indeed as a constant

magnetic field. In the lattice formulation I have taken (Grosche, 1996; Grosche

and Steiner, 1998) D qj 5 qj 2 qj 2 1, qj 5 q(tj), tj 5 j e , j 5 1, . . . , N, e 5
T/N, N ® ` , f 2(qj) [ f (qj 2 1)f (qj), for any function f of the coordinates. The

bound-state solutions are given by

C b
N, l( t , w ) 5 F N! (2b 1 ) l ) ) G (2b 2 N 1 ) l ) )

4 p (N 1 ) l ) )! G (2b 2 N ) G
1/2

3 eil w 1 tanh
t
2 2

) l )

1 1 2 tanh2 t
2 2

b 2 N

3 P( ) l ) ,2b 2 2N 2 1)
N 1 1 2 2 tanh2 t

2 2 (13)

EN 5
" 2

2m F b2 1
1

4
2 1 b 2 N 2

1

2 2
2

G ,

(N 5 0, 1, . . . # Nmax , b 2 1±2) (14)

P(a,b)
n (x) are Jacobi polynomials (Gradshteyn and Ryzhik, 1980). The energy

levels (14) are the Landau levels on the hyperbolic plane. This is in complete

analogy to the flat-space case, where the Landau levels are En 5 " v (n 1
1±2) with v 5 eB/ " c the cyclotron frequency, and the bound states are described

by Laguerre polynomials (e.g., Grosche and Steiner, 1998). The flat-space

limit can be recovered (Grosche et al., 1996) by reintroducing the constant

curvature k 5 1/R (R . 0), redefining EN ® EN /R2, b ® bR2 [note b(cosh
t 2 1) ® br 2R2/2, r . 0 the polar variable in R 2, as R ® ` ], and considering

the limit R ® ` .

For the continuous states, the wavefunctions and the energy spectrum,

respectively, are



960 Grosche

C b
k, l( t , w ) 5

1

p ) l ) ! ! k sinh 2 p k

4 p
G 1 1 1 ik

2
1 b 1 ) l ) 2 G 1 1 1 ik

2
2 b 2

3 eil w 1 tanh
t
2 2

) l )

1 1 2 tanh2 t
2 2

1/2 1 ik

3 2F1 1 1

2
2 ik 1 b 1 ) l ) , 1

2
1 ik 2 b; 1 1 ) l ) ; tanh2 t

2 2 (15)

Ek 5
" 2

2m 1 k2 1 b2 1
1

4 2 (16)

2F1(a, b; c; z) is the hypergeometric function, and k . 0 denotes the wavenum-

ber. I note that a minimum strength of B is required in order that bound states

can occur, and only a finite number of bound states can exist. For the case
that the magnetic field vanishes we obtain (Grosche and Steiner, 1988) [for

the relation of the Legendre functions to the hypergeometric function see,

e.g., Gradshteyn and Ryzhik (1980)]

C k, l 5 ! k sinh p k

2 p 2 G (1±2 1 ik 1 ) l ) ) eil w 3 2 ) l )
ik 2 1/2(cosh t ) (17)

Ek 5
" 2

2m 1 k2 1
1

4 2 (18)

For instance, we have the relation (Abramowitz and Stegun, 1984)

3 m
n 2 1/2(cosh t ) 5

1

G (1 2 m )
22 m (1 2 e 2 2 t ) 2 m e 2 ( n 1 1/2) t

3 2F1 1 1

2
2 m ;

1

2
1 n 2 m ; 1 2 2 m ; 1 2 e 2 2 t 2 (19)

However, for the vector potential for an Aharonov ±Bohm gauge field,

we need another Ansatz. Following Kuperin et al. (1994), I take A 5 Be w

with B 5 const. Therefore we get for the classical Hamiltonian

* 5
" 2

2m F p2
t 1

1

sinh2 t 1 p w 2
eB

" c 2
2 G (20)

and for the Lagrangian (b 5 eB/ " c)

+ 5
m

2
( t Ç 2 1 sinh2 t w Ç 2) 1

e

c
A ? 1 t Ç

w Ç 2 5
m

2
( t Ç 2 1 sinh2 t w Ç 2) 1 j w Ç (21)
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Note that the vector potential in (12) vanishes at t 5 0, which means that

we can take any constant for A w depending on the gauge, and the requirement

that it is nonzero. With the momentum operators p t 5 ( " /i)( - t 1 coth t ) and
p w 5 ( " /i) - w we get for the quantum Hamiltonian (together with the quantum

potential } " 2)

H 5
" 2

2m F p2
t 1

1

sinh2 t 1 p w 2
eB

" c 2
2

G 1
" 2

8m 1 1 2
1

sinh2 t 2 (22)

The angular variable w varies in the interval [0, 2 p ), and therefore we usually
assume w j P [0, 2 p ), " j. However, the path can loop around the infinitesimal

solenoid many times, which has the consequence that in our case w j P R ,

" j. Therefore, the path integral, if calculated according to (11), gives only a

partial propagator which belongs to a class of paths topologically constrained

by w j P [0, 2 p ), " j. For the total propagator, we have to take into account

all paths from all homotopically different classes. This can be done by
considering the path integration over the angular variable w j remaining in

the physical space M with D w j 5 w j 2 w j 2 1 1 2 p n ( w j P [0, 2 p ), n P Z ),

or alternatively switching to the covering space M * with D w j 5 w j 2 w j 2 1,

where w j P R . We therefore incorporate the effect of the infinitesimal thin

solenoid by a d -function constraint in the path integral, with an additional

integration * d w (Berndio and Inomata, 1980, 1981), and get (expanding the
d -function, j 5 e F /2 p " c with F the magnetic flux)

KAB( t 9, t 8, w 9, w 8; T )

5 # R

d w #
t (T) 5 t 9

t (0) 5 t 8

$ t (t) sinh t #
w (T) 5 w 9

w (0) 5 w 8

$ w (t) d 1 w 2 #
T

0

w Ç dt 2
3 exp H i

" #
T

0 F m

2
( t Ç 2 1 sinh2 t w Ç 2) 1 j w Ç

2
" 2

8m 1 1 2
1

sinh2 t 2 G dt J
5 exp 1 2

i " T

8m 2 # R

d w # R

d l
2 p

ei l w lim
N ® ` 1 m

2 p i " e 2
N

3 &
N 2 1

j 5 1 #
`

0

sinh t j d t j #
2 p

0

d w j

3 exp F i

" o
N

j 5 1 1 m

2 e
( D 2 t j 1 sinhÃ2 t j D 2 w j)
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1 ( j 2 l ) D w j 2
e " 2

8m sinh2 t j 2 G
5 # R

d w # R

d l
2 p

ei l w o
`

l 5 2 `
eil( w 9 2 w 8)K l 1 l 2 j ( t 9, t 8; T ) (23)

where

K l 1 l 2 j ( t 9, t 8; T )

5 e 2 i " T/8m #
t (T) 5 t 9

t (0) 5 t 8

$ t (t)

3 exp F i

" #
T

0 1 m

2
t Ç 2 2

" 2

2m

( l 1 l 2 j )2 2 1/4

sinh2 t 2 dt G (24)

Using Poisson’ s summation formula

o
`

l 5 2 `
eil u 5 2 p o

`

k 5 2 `
d ( u 1 2 p k) (25)

we obtain (by changing the integration variable l ® l 1 j 2 l)

KAB( t 9, t 8, w 9, w 8; T )

5
1

2 p # R

d w # R

d l ei l w o
`

l 5 2 `
eil( w 9 2 w 8)K l 1 l 2 j ( t 9, t 8; T )

5
1

2 p # R

d w # R

d l eil( w 9 2 w 8 2 w ) 1 i( l 1 j ) w K l ( t 9, t 8; T )

5 # R

d w o
`

k 5 2 `
d ( w 9 2 w 8 2 w 1 2 p k)ei( l 1 j ) w # R

d l K l ( t 9, t 8; T ) (26)

K l is now given by

K l ( t 9, t 8; T )

5 e 2 i " T/8m #
t (T) 5 t 9

t (0) 5 t 8

$ t (t) exp F i

" #
T

0 1 m

2
t Ç 2 2

" 2

2m

l 2 2 1/4

sinh2 t 2 dt G
5 #

`

0

dk e 2 iEkT/ " C k, l ( t 9) C *k, l ( t 8) (27)

The wavefunctions and the energy spectrum are given by (17) and (18),

respectively, with l ® l . Performing the w integration in (26) yields
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KAB( t 9, t 8, w 9, w 8; T )

5 o
`

n 5 2 `
ei j ( w 9 2 w 8 1 2 p n) # R

d l ei l ( w 9 2 w 8 1 2 p n)K l ( t 9, t 8; T ) (28)

which displays the expansion in the winding numbers. For j 5 0 the free

Feynman kernel on L is recovered.

If we want to study the effect of scattering by an Aharonov ±Bohm

solenoid we must consider interference terms according to

Inl 5 K*n Kl 1 K*l Kn (29)

Unfortunately, a closed expression for the propagator (27) does not exist. We

can either analyze (27) by means of an asymptotic expansion of the Legendre

functions, i.e.,

P m
ip 2 1/2(z) } [ G (ip)/ G (1/2 1 ip 2 m )](2z)1/2 2 ip/ ! p 1 c.c. as ) z ) ® `

which yields very complicated and analytically intractable integrals over G
functions. Alternatively, we can use the formula lim n ® ` n m 3 2 m

n (cosh(z/ n )) 5
I m (z) (Gradshteyn and Ryzhik, 1980), which corresponds to the flat-space

limit of the hyperbolic space with constant curvature R. Restricting therefore

the evaluation of Inl to the flat-space limit R ® ` , we reintroduce the constant

curvature R into the path integral (27) by means of m t Ç 2 ® mR2 t Ç 2 5 mr 2,

and m sinh2 t ® mR2 sinh2 t ® mR2 t 2 5 mr 2 (r 5 R t is the radial variable
in Euclidean polar coordinates) as R ® ` (Izmest’ ev et al., 1997). This gives

for K l in this limit the usual free Feynman kernel in polar coordinates in R 2

(Grosche and Steiner, 1998; Peak and Inomata, 1969)

K l ( t 9, t 8; T ) . K l (r9, r8; T ) 5
m

2 p i " T
exp F im

2 " T
(r82 1 r 92) G I ) l ) 1 mr8r9

i " T 2
(30)

Following Berndio and Inomata (1980, 1981), we can now evaluate Inl. By
means of the asymptotic formula [ ) z ) ® ` , R(z) . 0]

I l (z) . ! 1

2 p z
exp 1 z 2

l 2 2 1/4

2z 2 (31)

and a Gaussian integration we get the asymptotic expansion

#
`

2 `

d l ei l U I l (z) . exp 1 z 1
1

8z
2

z

2
U 2 2 (32)
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Hence we obtain for the partial propagator Kn (with z 5 mr8r 9/i " T, ignoring

the condition R(z) (Berndio and Inomata, 1980, 1981; Grosche and Steiner,

1998; Peak and Inomata, 1969),

Kn( t 9, t 8, w 9, w 8; T )

. m

2 p i " T
exp F imR2

2 " T
( t 9 2 t 8)2

1
i " T

8mR2 t 8 t 9
1 i j ( w 9 2 w 8 1 2 p n) 1

imR2 t 8 t 9

2 " T
( w 9 2 w 1 2 p n) G (33)

Consequently, we get for the interference term

Inl . 2 1 m

2 p i " T 2
2

3 cos F 2 p (l 2 n) 1 j 1
mR2 t 8 t 9

" T
( w 9 2 w 8 2 p ) 2

1 2 p 2 mR2 t 8 t 9

" T
(l 2 n)(l 1 n 1 1) G (34)

The principal feature of this result is that the interference patterns do not
depend only on the initial ( t 8, w 8) and final points ( t 9, w 9), but on the homotopy

class numbers n and m as well, which describe the windings around the

infinitesimal thin solenoid. This flux-dependent shift is a proper Aharonov ±

Bohm effect. The interference term vanishes for n 5 l.
The maximum contribution to the Aharonov ±Bohm effect on the (hyper-

bolic) plane is observed for the smallest nonvanishing value ) n 2 l ) 5 1 .
0. Therefore, the maximum effect is observed for the interference of the

winding number l 5 0 and n 5 2 1, or vice versa, yielding the interference term

I0, 2 1 5 2 1 m

2 p i " T 2
2

cos(2 p j ) (35)

This is the standard result; see, e.g., Feynman and Hibbs (1965) and Berndio

and Inomata (1980, 1981), and references therein.

3. HIGGS OSCILLATOR AND KEPLER± COULOMB
POTENTIAL

Obviously, we can incorporate potential terms in the radial path integra-

tion t , e.g., we can include the Higgs-oscillator potential (Grosche et al.,
1996; Higgs, 1979)



Path Integral for Aharonov± Bohm Field on Hyperbolic Plane 965

V(Higgs)(u) 5
m

2
v 2R2 u2

1 1 u2
2

u2
0

5
m

2
v 2R2 tanh2 t (36)

which is the analogue of the harmonic oscillator in a space of constant

curvature, or the Kepler±Coulomb potential (Barut et al., 1990; Grosche,

1990b; Grosche et al., 1996),

V(Coulomb)(u) 5 2
a
R 1 u0

! u2
1 1 u2

2

2 1 2 5 2
a
R

(coth t 2 1) (37)

For clarity, I have included the dependence on the constant curvature R
explicitly. In these cases, the result (23) is more appropriate. The combined

d w d l integration yields l 5 0, and the total propagator becomes

KAB( t 9, t 8, w 9, w 8; T ) 5 o
`

l 5 2 `
eil( w 9 2 w 8)K ) l 2 j ) ) ( t 9, t 8, T ) (38)

and the effect of the solenoid results in a modification of the angular momen-

tum dependence of K ) l 2 j ) . This feature, however, modifies the number of

bound states of the system with respect to the quantum number l. For instance,

for the Higgs-oscillator case this gives ( n 2 5 m2 v 2R4/ " 2 1 1/4)

C (Higgs)
nl ( t , w ; R) 5 (2 p sinh t ) 2 1/2S( n )

n ( t ; R)eil w (39)

S( n )
n ( t ; R)

5
1

G ( ) l 2 j ) 1 1)

3 F 2( v 2 ) l 2 j ) 2 2n 2 1) G (n 1 ) l 2 j ) 1 1) G ( n 2 ) l 2 j ) )
R2 G ( n 2 ) l 2 j ) 2 n)n! G

1/2

3 (sinh t ) ) l 2 j ) 1 1/2(cosh t )n 1 1/2 2 n

3 2F1( 2 ) l 2 j ) , n 2 n; 1 1 ) l 2 j ) ; tanh2 t ) (40)

with the discrete spectrum given by

E(Higgs)
n 5 2

" 2

2mR2 F (2n 1 ) l 2 j ) 2 n 1 1)2 2
1

4 G 1
m

2
v 2R2 (41)

Only a finite number exist with Nmax 5 [ n 2 ) l 2 j ) 2 1] $ 0 ([x] denotes

the integer value of x P R ). The continuous wavefunctions have the form
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C (Higgs)
kl ( t , w ; R) 5 (2 p sinh t ) 2 1/2S ( n )

k ( t ; R)eil w (42)

S( n )
k ( t ; R) 5

1

G ( ) l 2 j ) 1 1) ! k sinh p k

2 p 2R2

3 G 1 n 2 ) l 2 j ) 1 1 2 ik

2 2 G 1 ) l 2 j ) 2 n 1 1 2 ik

2 2
3 (tanh t ) ) l 2 j ) 1 1/2(cosh t )ik (43)

3 2F1 1 n 1 ) l 2 j ) 1 1 2 ik

2
,
) l 2 j ) 2 n 1 1 2 ik

2
;

1 1 ) l 2 j ) ; tanh2 t 2 (44)

with the continuous energy spectrum given by

E(Higgs)
p 5

" 2

2mR2 1 k2 1
1

4 2 1
m

2
v 2R2 (45)

In the case of the Kepler±Coulomb problem on L we obtain for the dis-
crete energy spectrum (NÄ 5 N 1 ) l 2 j ) 1 1±2 ; N 5 0, 1, 2, . . . , Nmax 5
[ ! R/a 2 ) l 2 j ) 2 1±2 ]; a 5 " 2/m a is the Bohr radius)

E (Coulomb)
N 5

a
R

2 " 2 NÄ 2 2 1±4

2mR2 2
m a 2

2 " 2NÄ 2 (46)

I do not state the wavefunctions here (Grosche et al., 1996), and the continuous

states are modified by their angular momentum dependence, i.e., l ® l 2
j . However, the effect of the Aharonov ±Bohm field is not restricted to a

modification of the discrete spectrum, but the effect on the scattering states
happens through an interference term Inl similar to (29), for the Coulomb

potential and the Higgs oscillator as well. Again, a closed expression for the

radial propagator does not exist and we are restricted to the investigation of

the limiting case along the lines following (29). I do not repeat this here.

4. SUMMARY

I have shown the admissibility of path integration of the Aharonov ±
Bohm effect on the hyperbolic plane. It can be studied in a straightforward

manner yielding analogous results to the flat-space case. For scattering

states we find interference, due to the modification of the angular momentum

dependence according to l ® l 2 j , giving a cos-like pattern in terms of
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the strength of the vector potential for the free motion, the Kepler±Coulomb

problem, and the Higgs oscillator (which is absent in the flat-space case);

the bound-state wavefunction and the corresponding energy levels are
modified in their angular momentum dependence l ® l 2 j as well,

including an alteration of the number of bound states. We found the usual

expansion of the total propagator in terms of an expansion in the winding

number n of the homotopy class of paths. All these features are well-

known from the corresponding flat-space cases. The complicated interfer-

ence expression (29) could not be evaluated due the non-constant-curvature
features of the hyperbolic plane. This would involve an intractable analytical

integration over Legendre functions with respect to the order. However,

the investigation of the flat-space limit gave the well-known result.

Therefore the effect of an Aharonov ±Bohm gauge field on the hyperbolic

plane, i.e., scattering on leaky tori, exhibits the same features as in the

flat-space case of R 2.
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